Invited review

Mechanisms of action of currently used antiseizure drugs

Graeme J. Sillsa,*, Michael A. Rogawskib,c

a School of Life Sciences, University of Glasgow, Glasgow, UK
b Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, USA
c Department of Pharmacology, School of Medicine, University of California, Davis, Sacramento, CA, USA

\section*{HIGHLIGHTS}

- Antiseizure drugs affect the generation and spread of epileptic hyperexcitability.
- They have actions on voltage-gated sodium, calcium and potassium ion channels.
- Also affect excitatory and inhibitory neurotransmission and neurotransmitter release.
- New small molecule drugs, such as cannabinoids, continue to be licensed for epilepsy.
- Future therapies likely to be targeted to known pathogenic or genetic defects.

\section*{ARTICLE INFO}

\textbf{Keywords:}
Antiseizure drugs
Mechanism of action

\section*{ABSTRACT}

Antiseizure drugs (ASDs) prevent the occurrence of seizures; there is no evidence that they have disease-modifying properties. In the more than 160 years that orally administered ASDs have been available for epilepsy therapy, most agents entering clinical practice were either discovered serendipitously or with the use of animal seizure models. The ASDs originating from these approaches act on brain excitability mechanisms to interfere with the generation and spread of epileptic hyperexcitability, but they do not address the specific defects that are pathogenic in the epilepsies for which they are prescribed, which in most cases are not well understood. There are four broad classes of such ASD mechanisms: (1) modulation of voltage-gated sodium channels (e.g. phenytoin, carbamazepine, lamotrigine), voltage-gated calcium channels (e.g. ethosuximide), and voltage-gated potassium channels [e.g. retigabine (ezogabine)]; (2) enhancement of GABA-mediated inhibitory neurotransmission (e.g. benzodiazepines, tiagabine, vigabatrin); (3) attenuation of glutamate-mediated excitatory neurotransmission (e.g. perampanel); and (4) modulation of neurotransmitter release via a presynaptic action (e.g. levetiracetam, brivaracetam, gabapentin, pregabalin). In the past two decades there has been great progress in identifying the pathophysiological mechanisms of many genetic epilepsies. Given this new understanding, attempts are being made to engineer specific small molecule, antisense and gene therapies that functionally reverse or structurally correct pathogenic defects in epilepsy syndromes. In the near future, these new therapies will begin a paradigm shift in the treatment of some rare genetic epilepsy syndromes, but targeted therapies will remain elusive for the vast majority of epilepsies until their causes are identified.

\section*{1. Introduction}

Drugs used in the treatment of epilepsy are taken chronically to prevent the occurrence of seizures. In broad terms, they influence fundamental brain excitability mechanisms to suppress abnormal hyperexcitability and hypersynchronous activity in brain circuits. Antiseizure drugs (ASDs) do not necessarily have specific actions related to the underlying pathogenic mechanisms in epilepsy, which in most cases are not understood. In the past two decades, the molecular defects in many genetic epilepsies have been characterised and there is an intense interest in the development of disease-specific targeted therapies. Early examples of this effort include everolimus, an inhibitor of mTOR signalling used in tuberous sclerosis, and cerliponase alfa, used in the treatment of the CLN2 form of Batten disease. Focus is also being directed toward antisense approaches and gene therapies with viral vectors, but small molecules that interact with diseased proteins,
such as ion channels with gain or loss of function mutations, are also being investigated. A theoretical advantage of such mechanism-based therapies is that they have the potential to not only reduce the occurrence of seizures but also to prevent or reverse comorbidities, such as neurological impairments that are common in such syndromes.

Early ASDs were identified serendipitously when they were administered to people with epilepsy (bromide was introduced in 1857 and phenobarbital in 1912). Testing in animal models led to the discovery of phenytoin in 1936 and has been notably successful ever since, with more than 30 distinct molecular entities entering clinical practice as a result of this approach. Several other ASDs were rationally developed based on mechanism (e.g., tiagabine, vigabatrin, perampanel) and others represent minor chemical modifications of existing drugs (e.g., fosphenytoin, various benzodiazepine forms, oxcarbazepine, eslicarbazepine acetate, brivaracetam). None of these drugs have been demonstrated to have disease modifying properties; they simply treat symptoms (reduce the occurrence of seizures). As such, the term “antiepileptic drug” has fallen out of favour, having been replaced by the designation “antiseizure drug” as used in this article.

Recurrent seizure activity is the manifestation of intermittent and excessive hyperexcitability in localised cortical or limbic circuits in focal-onset epilepsies or more diffuse networks in generalized epilepsies. Four broad classes of ASD mechanism have recently been recognised: (1) modulation of voltage-gated ion channels; (2) enhancement of GABA-mediated inhibitory neurotransmission; (3) attenuation of glutamate-mediated excitatory neurotransmission; and (4) modulation of neurotransmitter release via a presynaptic action (Table 1; Rogawski and Cavazos, 2020). A fifth class represents the mechanism-targeted agents, exemplified by everolimus. There is obvious overlap in these mechanistic classes, particularly for those drugs in class 1 and class 4, where alteration in ionic currents that underlie neuronal excitability has downstream effects on neurotransmitter release at synapses, with glutamate release seemingly diminished to a greater extent than that of GABA (Prakriya and Mennerick, 2000). Some ASDs are likely to prevent seizures via actions on multiple cellular targets; the combination of effects may contribute to efficacy while limiting adverse effects mediated by any individual mechanism. The mechanism of action of several ASDs, including the important agents valproate and levetiracetam, remain elusive even after several decades of clinical use (Löschter, 2002). Nevertheless, the primary mechanisms of action of the majority of currently used drugs is now reasonably well delineated; these are discussed in detail below.

Table 1: Molecular targets of clinically used antiseizure drugs.

<table>
<thead>
<tr>
<th>Molecular Target</th>
<th>Antiseizure Drugs That Act on Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage-gated ion channels</td>
<td></td>
</tr>
<tr>
<td>Voltage-gated Na(^+) channels</td>
<td>phenytoin, fosphenytoin(^a), carbamazepine, oxcarbazepine(^b), eslicarbazepine acetate(^c), lamotrigine, lacosamide, cenobamate; possibly, rufinamide, topiramate, zonisamide</td>
</tr>
<tr>
<td>Voltage-gated Ca(^{2+}) channels</td>
<td>ethosuximide</td>
</tr>
<tr>
<td>Voltage-gated K(^+) channels</td>
<td>retigabine (ezogabine)</td>
</tr>
<tr>
<td>GABA-mediated inhibition</td>
<td></td>
</tr>
<tr>
<td>GABA(_{α}) receptors</td>
<td>phenobarbital, primidone, benzodiazepines including diazepam, lorazepam, clonazepam, midazolam, clobazam; stiripentol; possibly, topiramate, felbamate, cenobamate, ritigabine (ezogabine)</td>
</tr>
<tr>
<td>GABA transporter</td>
<td>tiagabine</td>
</tr>
<tr>
<td>GABA transaminase</td>
<td>vigabatrin</td>
</tr>
<tr>
<td>Carbonic anhydrase</td>
<td>acetazolamide, topiramate, zonisamide; possibly lacosamide</td>
</tr>
<tr>
<td>Synaptic release machinery</td>
<td></td>
</tr>
<tr>
<td>SV2A</td>
<td>levetiracetam, brivaracetam</td>
</tr>
<tr>
<td>α2δ subunit of voltage-gated Ca(^{2+}) channels</td>
<td>gabapentin, gabapentin enacarbil(^d), pregabalin</td>
</tr>
<tr>
<td>Ionotropic glutamate receptors</td>
<td></td>
</tr>
<tr>
<td>AMPA receptor</td>
<td>perampanel</td>
</tr>
<tr>
<td>Disease specific</td>
<td></td>
</tr>
<tr>
<td>mTORC1 signalling</td>
<td>everolimus</td>
</tr>
<tr>
<td>Lyosomal enzyme replacement</td>
<td>cerliponase alfa (recombinant tripeptidyl peptidase 1)</td>
</tr>
<tr>
<td>Mixed/unknown</td>
<td>valproate, felbamate, cenobamate, topiramate, zonisamide, rufinamide, adrenocorticotropicin, cannabidiol</td>
</tr>
</tbody>
</table>

Table adapted from Rogawski and Cavazos (2020).

\(^a\) Fosphenytoin is a prodrug for phenytoin.

\(^b\) Oxcarbazepine serves largely as a prodrug for licarbazepine, mainly S-licarbazepine.

\(^c\) Eslicarbazepine acetate is a prodrug for S-licarbazepine.

\(^d\) Gabapentin enacarbil is a prodrug for gabapentin.
channel isoform, is also expressed throughout the brain but its role is not well understood, and NaV1.1 is the major voltage-gated sodium channel in inhibitory interneurons (Whitaker et al., 2000; Wang et al., 2017). In contrast, the NaV1.2 and NaV1.6 channels are expressed in the axon initial segment of principal excitatory neurons, the former predominating in the immature brain and the latter becoming increasingly prevalent during development (Whitaker et al., 2000). The NaV1.6 channel also carries a significant proportion of the persistent sodium current that has been implicated in burst firing and ictogenesis (Stafstrom, 2007). Under normal physiological conditions, depolarisation of the neuronal membrane leads to a transient inward sodium current which rapidly inactivates. However, a small proportion of sodium channels appear to undergo rare, late openings in response to depolarisation and give rise to a sodium current that fails to inactivate, and is thereby termed “persistent” (Crill, 1996). The existence of this non-inactivating sodium current is relevant to the pharmacology of some ASDs (see below).

Voltage-gated sodium channels exist in one of three basic conformational states; (i) at hyperpolarised potentials the channel is typically found in a resting, closed state, (ii) when depolarised the channel transitions to an open state that is permeable to sodium ions, and (iii) following depolarisation the channel enters a closed, non-conducting inactivated state (Catterall, 1992; 2017). During a single round of depolarisation, channels cycle through these states in turn – resting to open, open to inactivated, inactivated to resting – and the ability of individual channels to contribute to subsequent membrane depolarisations is governed by the rate at which they revert from the inactivated to resting state. Two distinct inactivation states of the voltage-gated sodium channel are now recognised; a fast inactivated state that is conferred by a “hinged lid” formed from the intracellular loop between domains III and IV that transiently (milliseconds duration) blocks the ion pore following short depolarisations, and a slow inactivated state that is conferred by a longer lasting (seconds duration) conformational change in the α-subunit protein which is observed following prolonged depolarisations (Silva, 2014). Modification of slow inactivation has been proposed as a mechanism for certain ASDs, but recent work calls this notion into question (Jo and Bean, 2017).

Blockade of voltage-gated sodium channels is the most common mechanism of action among currently available ASDs. The established agents phenytoin and carbamazepine are archetypal sodium channel blockers, an effect they share with the newer drugs lamotrigine, oxcarbazepine, lacosamide, and S-licarbazepine, which is the active metabolite of the prodrug eslicarbazepine acetate (Ragsdale et al., 1991; Mantegazza et al., 2010). Rufinamide also acts at least in part via voltage-gated sodium channels, possibly with modest preferential activity on NaV1.1 and NaV1.6 (Gilibrist et al., 2014), but other mechanisms are likely given its distinctive clinical profile. Topiramate, felbamate and zonisamide have also been reported to block sodium channels, as one of several possible mechanisms. Despite their structural dissimilarities, there is believed to be a common binding site for ASDs on the α-subunit of the voltage-gated sodium channel, which is found on the inner pore region of domain IV, transmembrane segment S6 (Kuo, 1998). Differences in efficacy and adverse effects of selective sodium channel blocking ASDs are explained by differences in their rates of binding (i.e., their affinities) and also in their mechanisms of unbinding or dissociation (Kuo et al., 1997). Much of the work in this area has focused on differences between phenytoin and carbamazepine, with the former appearing to possess a slower onset of binding and a similarly slow dissociation that is driven by deactivation of the channel (Kuo and Bean, 1994). As such, phenytoin appears to have a more pronounced and longer lasting effect than carbamazepine on high frequency action potential firing.

Another common feature of ASDs with sodium channel blocking properties is their preferential affinity for the channel protein when it exists in the inactivated state (Schwarz and Grigat, 1989). Binding slows the conformational recycling process, producing a shift of sodium channels into the inactivated state from which recovery is delayed. Thus, ASDs effectively extend the ‘refractory’ period of the channel. As a result, these drugs produce a characteristic use- and frequency-dependent reduction in channel conductance, resulting in a limitation of repetitive neuronal firing, with little effect on the generation of single action potentials or on low frequency (< 1 Hz) firing (Macdonald and Kelly, 1995). This is exemplified in experimental studies in which sustained repetitive action potential firing can be used as a bioassay for sodium channel blocking activity (Macdonald and McLean, 1986).

An extreme example of slow binding to the inactivated state is presented by lacosamide. Phenytoin and carbamazepine inhibit repetitive firing of cultured neurons in vitro within 100 ms, whereas lacosamide, which also inhibits repetitive action potential firing, does so on a time scale of 1 s or more (Errington et al., 2008). This divergence was initially thought to be due to a preferential effect of lacosamide on slow inactivation of the sodium channel (Rogawski et al., 2015), an action that is also proposed for S-licarbazepine (Hebeisen et al., 2015). However, a more recent analysis suggests that the effects of lacosamide in this regard actually reflect very slow binding to the fast inactivated state of the channel (Jo and Bean, 2017). Since seizure discharges occur on the timescale of seconds, it is possible that the slow action of lacosamide might confer an even greater selectivity for seizure-related action potential firing than non-seizure-related firing, such that efficacy or tolerability might be improved. However, there is scant evidence that lacosamide has improved clinical effectiveness (Baulac et al., 2017).

In addition to effects on transient sodium currents, some ASDs can also block the persistent sodium current, which arises as a result of rare, late openings of NaV1.6 channels in particular (Chatelier et al., 2010). Although the persistent current comprises only a small percentage of total sodium conductance in any single round of depolarisation, prolonged late openings can contribute significantly to a persistent depolarisation that is reminiscent of the paroxysmal depolarising shift which characterises epileptiform activity (Walker and Surges, 2016). There is evidence that phenytoin blocks the persistent sodium current and to a potentially greater degree than the transient current that underlies normal action potential generation (Segal and Douglas, 1997). Likewise, cenobamate, which, at the time of writing, has become the latest ASD to be approved by the FDA for use in focal-onset seizures, inhibits the persistent sodium current more potently than the transient sodium current (Nakamura et al., 2019), although it appears to have additional effects on GABAA receptors at marginally higher concentrations (discussed below). Other sodium channel blocking ASDs, including carbamazepine and topiramate, may also block the persistent sodium current, with a potency that can approximate or even exceed their effect on the transient sodium current (Sun et al., 2007). As such, inhibition of the persistent sodium current could contribute to the ability of these various agents to suppress sustained depolarisations while sparing single action potentials and low frequency firing.

2.2. Blockade of voltage-gated calcium channels

Voltage-gated calcium channels are involved in neuronal burst firing and are responsible for the control of neurotransmitter release at presynaptic nerve terminals. Like sodium channels, voltage-gated calcium channels comprise a single α1-subunit protein, typically 170–240 kDa, which again comprises four homologous domains each with six transmembrane segments (Catterall, 2000). Molecular studies have identified ten different α1-subunits (CaV1.1–1.4, CaV2.1–2.3, CaV3.1–3.3), at least seven of which are known to be expressed in mammalian brain (Trimmer and Rhodes, 2004). In addition, there are a number of accessory proteins, including β- and α2δ-subunits, that modulate the function and cell-surface expression of the α1-subunit but which are not essential for basic channel functionality (Dolphin, 2012).

There are four main types of voltage-gated calcium channel in mammalian brain, commonly grouped into two classes on the basis of their biophysical properties and patterns of cellular expression (Catterall, 2000). L-type, P/Q-type and N-type belong to the class of
high-voltage-activated calcium channels that respond to strong depolarisations and are involved in the processing of synaptic inputs at the somatodendritic level (L-type) and in presynaptic neurotransmitter release (P/Q- and N-type). The L-type channel comprises α1-subunits from the CaV1 family, while P/Q-type and N-type channels are formed from CaV2.1 and CaV2.2 α1-subunits, respectively (Trimmer and Rhodes, 2004). In contrast, the low-voltage-activated T-type calcium channel (comprising α1-subunits from the CaV3 family) opens in response to modest depolarisations at or below resting membrane potential, rapidly inactivates, and gives rise to transient (hence T-type) currents that participate in intrinsic oscillatory activity (Suzuki and Rogawski, 1989). The T-type channel is highly expressed on the soma and dendrites of thalamic relay and reticular neurons where it has been shown to underpin the rhythmic 3 Hz spike-wave discharges that are characteristic of absence seizures (McCormick and Contreras, 2001).

Voltage-gated calcium channels represent an important target for several ASDs. The efficacy of ethosuximide in absence epilepsy is believed to be mediated predominantly by blockade of T-type calcium channels in thalamocortical neurons, with preferential affinity for channels in the inactivated state (Coulter et al., 1989; Gomora et al., 2001), but there is also evidence that this drug can block the persistent sodium current and/or calcium-dependent potassium currents (Leresche et al., 1998). Zonisamide is also believed to block T-type calcium channels as one of several proposed mechanisms of action (Suzuki et al., 1992) and there is anecdotal evidence that valproate, another effective antiepileptic agent, can also block this channel type (Broicher et al., 2007).

Gabapentin and pregabalin also interact with voltage-activated calcium channels but the role of calcium channels in the antiseizure mechanism of these drugs is uncertain. Although gabapentin was originally designed as a GABA mimic that could freely cross the blood-brain barrier, it is now accepted that it and the related gabapentinoid pregabalin are devoid of GABAergic activity and instead bind with high affinity to α2β1 subunits of the voltage-gated calcium channel (Thorpe and Offord, 2010). This binding interaction is believed to account for the therapeutic activities of the drugs. The binding site on α2β1 for gabapentinoids has been modelled based on a recent cryo-electron microscopy structure (Kotey et al., 2018). It is presumed that binding of the gabapentinoids causes a conformational change in α2β1 that alters its association with other proteins. It has long been assumed that the primary role of α2β1 is as a partner of calcium channel α1-subunits, and there is extensive evidence that α2β1 promotes insertion and retention of α1-subunits in the plasma membrane (Hendrich et al., 2008; Dolphin, 2013). However, the binding interaction between α2β1 and α1 is weak, and calcium currents in brain neurons are unaffected by knockout of α2β1. Moreover, it has not been possible to reliably show a robust effect of gabapentin and pregabalin on calcium channel currents, raising the question of the role of calcium channels in the mechanism of action of these drugs. Although inhibition of presynaptic calcium channels with a consequent reduction in release of excitatory neurotransmitter is an appealing mechanism to explain the antiseizure activity of gabapentinoids, the experimental evidence is not supportive. Nevertheless, there are studies that demonstrate an inhibition of excitatory synaptic potentials at brain synapses, but the mechanism is obscure (Cunningham et al., 2004; Dooley et al., 2007). Recent studies indicate that α2β1 associates with other proteins, including NMDA receptors (Chen et al., 2018b). While inhibition of NMDA receptors could contribute to the antiseizure activity of gabapentinoids, this is unlikely to be the sole activity of the drugs as their profile in animal seizure models and clinical activity does not correspond with that of NMDA receptor antagonists. Interactions of α2β1 with other as yet unidentified targets could conceivably play a role.

Other ASDs have less selective but perhaps more conventional inhibitory effects on specific types of high-voltage-activated calcium channel. Lamotrigine blocks N- and P/Q-type calcium channels on presynaptic nerve terminals (Wang et al., 1996), an effect which likely explains early evidence that the drug is able to reduce synaptic release of glutamate, and levetiracetam appears to exert a partial blockade of N-type calcium currents (Lukyanetz et al., 2002), suggesting an effect on an as yet unidentified sub-class of this channel type. Likewise, phenobarbital and topiramate can block L- and N-type calcium currents (Ffrench-Mullen et al., 1993; Zhang et al., 2000), although their effects on calcium channels at therapeutic concentrations are modest compared to effects on other likely antiseizure mechanisms (Löschner and Rogawski, 2012), and other ASDs, including oxcarbazepine and felbamate, also have actions, albeit less well characterised, on high-voltage activated calcium channels (Stefani et al., 1995; 1996).

2.3. Potentiation of voltage-gated potassium channels

Voltage-gated potassium channels are critical determinants of neuronal excitability, responsible for repolarising the cell membrane in the aftermath of action potential firing and regulating the balance between input and output in individual neurons. As a group, they are highly heterogeneous. More than 40 voltage-gated potassium channel α-subunits are recognised, most of which are structurally similar to a single domain of the α-subunit of voltage-gated sodium and calcium channels (Gutman et al., 2005). They are classified into 12 subfamilies (Kv1 to Kv12), with individual channels comprising four α-subunits from the same subfamily arranged around a central potassium ion pore, typically in a ‘two plus two’ configuration (Kuang et al., 2015). Two major functional classes of voltage-gated potassium channel are extensively described in the literature: A-type (mostly Kc4) channels that rapidly activate and inactivate, and delayed rectifier channels that open (after a short delay) in response to depolarisation and which do not fully inactivate (Christie, 1995). This latter class comprises Kv1, Kv3 channels that are expressed on dendrites, axons and nerve terminals and which repolarise the neuronal cell membrane after action potential firing. This class also includes Kv7 channels that are expressed in the soma and axon initial segment and are responsible for the M-current, which determines the threshold and rate of neuronal firing and modulates the somatic response to dendritic inputs (Robbins, 2001). Mutations in the KCNQ genes, which encode Kv7 channels, are associated with a spectrum of seizure disorders ranging from benign familial neonatal convulsions to severe epileptic encephalopathies (Maljevic and Lerche, 2014).

Retigabine (known as ezogabine in the USA) is an ASD that exerts its effects by activation of the Kv7 class of voltage-gated potassium channels, is specific for channels containing Kv7.2 to Kv7.5 subunits, and has particular affinity for channel assemblies containing dimers of Kv7.2/Kv7.3 and Kv7.3/Kv7.5 subunits (Tatulian et al., 2001). These channels underlie the M-current in seizure-prone regions of the brain, such as cerebral cortex and hippocampus. Retigabine enhances the M-current, increasing the rate at which it is activated by depolarisation and decreasing the rate at which it is subsequently deactivated (Gunterthorpe et al., 2012). It also enhances the M-current at resting membrane potential, hyperpolarising the cell membrane and reducing overall excitability of neurons. This effect of retigabine is mediated by binding of the drug within the pore of the channel. A single amino acid (Trp236) located in the activation gate of the Kv7 α-subunit protein is essential and all four subunits in the channel assembly must contain a tryptophan residue at position 236 for retigabine sensitivity (Schenzer et al., 2005). Retigabine was originally licensed in the USA and Europe in 2011 for the treatment of focal seizures in adults (Porter et al., 2012). Its use was later restricted due to the emergence of idiosyncratic adverse effects and although subsequently withdrawn by the manufacturer, there remains interest in the use of retigabine as a precision therapy in severe epileptic encephalopathies due to mutations in the KCNQ genes (Ihara et al., 2016).

3. Potentiation of inhibitory neurotransmission

GABA is the predominant inhibitory neurotransmitter in the mammalian central nervous system and is released at up to 40% of all synapses in the brain. GABA is synthesised from glutamate by the action
of the enzyme glutamic acid decarboxylase (GAD) and, following release from nerve terminals, acts on both GABA_\text{A} and GABA_\text{B} receptors, with a net inhibitory effect.

The GABA_\text{A} receptor is a ligand-gated ion channel and a member of the classical “Cys-loop” receptor family that comprise five independent protein subunits arranged around a central ion pore that is, in this case, permeable to chloride and bicarbonate ions (Olsen and Sieghart, 2009). Nineteen GABA_\text{A} receptor subunits have been identified to date, sixteen in brain (α1-6, β1-3, γ1-3, δ, ε, ϑ, θ) and three additional subunits in retina (ψ1-3), which come together as heteromeric pentamers to form functional channels (Sieghart, 1995). Heterogeneity in subunit composition suggests that countless thousands of GABA_\text{A} receptors might potentially exist but, in reality, only a handful of channels appear to be expressed in mammalian brain, the most common configuration containing two α1-subunits, two β2-subunits, and one γ2-subunit (Baumann et al., 2002). GABA_\text{A} receptors mediating transient, rapidly desensitising currents at the synapse (phasic inhibition) typically comprise two α-, two β-, and one γ2-subunit, whereas those at extrasynaptic sites and mediating long-lasting, slowly desensitising currents (tonic inhibition) preferentially contain α4- and α6-subunits and a δ-subunit in place of the γ2-subunit (Belletti et al., 2009). In contrast to the GABA_\text{A} receptor, GABA_\text{B} receptors are coupled, via a G-protein, to potassium channels that mediate slow hyperpolarisation of the post-synaptic membrane (Bowery, 1993). This receptor is also expressed on presynaptic nerve terminals where it acts as an autoreceptor, with activation limiting further GABA release.

GABA is removed from the synaptic cleft into nerve terminals and glial cells by a family of transporter proteins, encoded by members of the SLC6 gene family and denoted GAT-1, GAT-2, GAT-3, and BGT-1, that transport GABA down an electrochemical gradient driven by sodium and chloride ions (Borden, 1996). GAT-1 is the major GABA transporter expressed on both presynaptic nerve terminals and glial cells in cerebral cortex and hippocampus, with GAT-3 expression predominantly restricted to glia (Ribak et al., 1996; Lee et al., 2006). Following carrier-mediated re-uptake, GABA is either recycled into the readily releasable neurotransmitter pool or inactivated by conversion to succinic acid semialdehyde in a reaction catalysed by the mitochondrial enzyme GABA-transaminase.

3.1. Allosteric modulation of GABA_\text{A} receptors

Binding of neurotransmitter GABA to GABA_\text{A} receptors induces opening of the chloride ion channel that is intrinsic to the receptor. By contrast, ASDs that act on the GABA_\text{A} receptor are largely positive allosteric modulators. They do not open the receptor in the absence of GABA, although barbiturates can do this at high concentrations (Rho et al., 1996), but rather increase the response to synthetically released GABA, thereby enhancing inhibitory neurotransmission (Czuczwar and Patsalos, 2001). While barbiturates (i.e., phenobarbital, primidone) and benzodiazepines (i.e., diazepam, lorazepam, clonazepam and clozapam) share this effect, they bind to distinct sites on the receptor complex, possess different subunit specificities, and differentially influence the opening of the chloride channel.

The five subunits of GABA_\text{A} receptors are organised in a barrel-like fashion with subunits arranged like staves in a specific configuration, forming the central chloride ion pore. For example, the most abundant synaptic GABA_\text{A} receptor isoform consisting of (α1)\text{2}(β2)\text{2}(γ2)\text{1} has subunits arranged α1-γ2-β2-β2-α1-β2 counter-clockwise when viewed from the extracellular space. Each subunit has two surfaces that contact neighbouring subunits; the interface surfaces are designated principal (+) and complementary (−). The last β2 subunit (+)–interface contacts the initial α1 subunit (−)–interface to close the circle. Each GABA_\text{A} receptor binds two molecules of GABA at sites that are situated at the two β-α- subunit interfaces (Baumann et al., 2003). Benzodiazepine drugs also have a well-characterised binding site: one per receptor complex, at the α-γ2 subunit interface (Sigel and Buhr, 1997). Identification of the binding site for barbiturate drugs has been challenging, and to date all studies addressing this issue have investigated anaesthetic barbiturates (or analogues) and not phenobarbital, which is used in epilepsy therapy because it is less sedating at doses that confer antiseizure activity (Löschner and Rogawski, 2012). Recent studies indicate that barbiturates also bind at intramembrane subunit interfaces, which for these agents are γ+-β− and α+-β− (Chiara et al., 2013; Olsen, 2018) and at least one additional interface (Maldèfassi et al., 2016). All GABA_\text{A} receptors containing at least one α- and one β-subunit appear susceptible to allosteric activation by barbiturates, with only minor differences in relative sensitivity based on individual subunit composition (Hevers and Lüddens, 1998). Importantly, barbiturates act on δ-subunit containing extrasynaptic GABA_\text{A} receptors that mediate tonic inhibition (Feng and Macdonald, 2010). Neurotransmitter GABA acts as a “partial agonist” on αδGABA_\text{A} receptors (low efficacy activation even at saturating concentrations) and GABA currents generated by these receptors are markedly enhanced by barbiturates. However, it remains to be proven that positive allosteric modulation of extrasynaptic GABA_\text{A} receptors is a relevant antiseizure mechanism.

In contrast to barbiturates, benzodiazepines display a high degree of subunit selectivity, they do not activate GABA_\text{A} receptors in the absence of GABA even at high concentrations, and they exclusively act on synaptic GABA_\text{A} receptors. Benzodiazepine-sensitive GABA_\text{A} receptors are typically comprised of two α-subunits (chosen from α1, α2, α3 or α5), two β-subunits (either β2 or β3), and a γ2 subunit, whereas the δ-subunit-containing GABA_\text{A} receptors that mediate tonic inhibition at extrasynaptic sites, are insensitive to benzodiazepines, as are those containing α4- and α6-subunits (Farrant and Nusser, 2005; Sigel and Ernst, 2018). There are also functional distinctions between barbiturates and benzodiazepines, with the former increasing the duration of chloride channel opening in response to a given amount of GABA and the latter increasing the frequency of channel opening (Twyman et al., 1989).

Several other ASDs exert their effects, at least in part, by an allosteric action at the GABA_\text{A} receptor. These include stiripentol, an orphan drug that is licensed for Dravet syndrome, which is able to positively modulate all GABA_\text{A} receptor isoforms including those containing δ-subunits (Fisher, 2011), and which extends the duration of chloride channel opening in response to synthetically-released GABA in manner similar to that observed with barbiturates (Quilichini et al., 2006). Indeed, a recent study indicated that stiripentol binds with high affinity to the γ+-β− and α+-β− interfaces as do barbiturates (Jayakar et al., 2019). Felbamat and topiramate also promote GABA responses at the GABA_\text{A} receptor (Rho et al., 1997; Simeone et al., 2006a; 2006b; 2011), as one of several mechanisms of action, but these effects do not appear to occur by binding at barbiturate interaction sites (Jayakar et al., 2019). Cenobamate, which contains the alkyl carbamate moiety as does felbamate and retigabine, has also been shown to be a weak positive allosteric modulator of GABA_\text{A} receptors in hippocampal neurons, with effects on both phasic and tonic inhibitory currents and on recombinant synaptic and extrasynaptic GABA_\text{A} receptor isoforms that do not appear to occur via an interaction with the benzodiazepine binding site (Sharma et al., 2019). Finally, levetiracetam also has effects at the GABA_\text{A} receptor, indirectly influencing receptor function by blocking its negative allosteric modulation by β-carbolines and zinc (Rigo et al., 2002). The relevance of this action to the clinical activity of the drug is uncertain.

3.2. Modulation of GABA disposition

Vigabatrin and tiagabine are products of a rational drug discovery approach which was, in their cases, aimed at boosting inhibitory neurotransmission mediated by GABA (Löschner and Schmidt, 1994). Both drugs act by altering the disposition of GABA after it is released in the process of synaptic inhibition, albeit by different mechanisms.

Vigabatrin is an irreversible inhibitor of the mitochondrial enzyme GABA-transaminase, which is responsible for the catabolism of GABA.
valproate can act as a positive allosteric modulator at the GABA_A receptor currents exists, particularly following sustained exposure to polarisation mediated by GABA_A receptors (Overstreet and Westbrook, 2001). It has been reported to enhance the expression of glutamic acid or by inhibiting its breakdown. This remains the single most convincing evidence in this regard derived from 1H-magnetic resonance spectroscopy studies in human epilepsies (Tichelaar et al., 2004). In the mammalian brain there are four AMPA receptor subunits (GluA1-GluA4), five kainate receptor subunits (GluK1-GluK5) and seven NMDA receptor subunits (GluN1, GluN2A-GluN2D, GluN3A, GluN3B), although splice variants of several subunits add to the complexity (Traynelis et al., 2010). In addition to acting on AMPA receptors which are G-protein-coupled receptors that control cellular excitability and other cellular processes via second messenger signalling on a longer time scale (Reiner and Levitz, 2018). Some mGluRs function similarly to GABAB receptors in that they act predominantly as autoreceptors on glutamatergic terminals, limiting glutamate release (Schoepf, 2001).

All mGlRs respond to glutamate binding by increasing cation conductance resulting in neuronal depolarisation. Most AMPA and kainate receptors are permeable only to sodium ions, although AMPA receptors that lack a GluA2 subunit also conduct calcium (Dingledine et al., 1999). In addition to serving as the main mediators of fast excitatory synaptic transmission in brain, AMPA receptors are also critical to seizure generation (Rogawski, 2013). In contrast, while activation of kainate receptors can induce seizures, these receptors do not appear to play a pivotal role as kainate receptor knockout does not impair seizure generation (Fritsch et al., 2014). NMDA receptors are freely permeable to both sodium and calcium ions and, owing to a voltage-dependent blockade by magnesium ions at resting membrane potential, are only activated during periods of prolonged depolarisation, as occurs during epileptiform discharges (Dingledine et al., 1999). Glutamate is removed from the synapse into nerve terminals and glial cells by a family of specific sodium-dependent transport proteins (EAAT1–EAAT5) and is
inactivated by the enzymes glutamine synthetase (glial cells only) and glutamate dehydrogenase.

Despite many decades of intense effort across many CNS disease areas, there are only a handful of currently licensed drugs that possess a selective action at glutamate receptors. One of those is perampanel, an ASD that exerts its effects by non-competitive block of AMPA receptors (Rogawski and Hanada, 2013). It has no known effect on other receptor types, glutamate or otherwise. Perampanel binds to the AMPA receptor at a site on the extracellular domain of the channel protein, close to the interface with the phospholipid membrane, and distinct from the glutamate recognition site (Yelshanskaya et al., 2016). Binding of perampanel induces a conformational change in AMPA receptor subunits that limits their ability to translate agonist (i.e. glutamate) binding into channel opening (Yelshanskaya et al., 2016). The net result is to reduce fast excitatory neurotransmission and thereby limit seizure generation and the ability of seizure discharges to spread. Blocking the receptor that has primary responsibility for fast excitatory neurotransmission might be expected to have negative consequences in terms of tolerability. However, at therapeutic doses, perampanel is believed to block only a small proportion of the AMPA receptor current, sufficient to retard epileptiform discharges while sparing most normal synaptic transmission (Rogawski and Cavazos, 2020). Because of the critical role of AMPA receptors in brain function, perampanel has a low therapeutic window: increasing the dose even slightly can result in adverse neurological effects.

In addition to perampanel, several other ASDs exert their effects, in part, by an action on glutamatergic neurotransmission. Blockade of the NMDA subtype of glutamate receptor is believed to contribute to the pharmacological profile of felbamate (Rho et al., 1994) and topiramate has been shown to block the effects of kainate application in primary hippocampal neuron cultures, indicating inhibitory effects at either AMPA or kainate receptors (Gibbs et al., 2000). Levetiracetam inhibits AMPA-mediated currents in cortical neurons at therapeutic concentrations (Carunchio et al., 2007), and phenobarbital has also been reported to block AMPA receptors in a competitive manner, albeit at concentrations towards the upper end of its clinical range (Jin et al., 2010).

5. Modulation of neurotransmitter release

Several ASDs, most notably lamotrigine, have been reported to selectively reduce the release of glutamate from presynaptic nerve terminals (Leach et al., 1991). Although this phenomenon has been observed experimentally, it likely reflects an inhibitory action on presynaptic sodium and/or calcium channels rather than any specific effect on the synaptic vesicle release machinery in glutamatergic terminals. A more direct effect on neurotransmitter release may be produced by the ASD levetiracetam and its recently licensed analogue brivaracetam.

Levetiracetam was developed and licensed for the treatment of epilepsy with no clear indication of how it acts at the cellular level. A specific binding site for the drug in mammalian brain was later identified and determined to be synaptic vesicle protein 2A (SV2A) (Lynch et al., 2004). This protein is now considered to be the primary target of both levetiracetam and brivaracetam. Both drugs bind to SV2A, with brivaracetam being more potent and selective in this respect, and have little or no affinity for SV2B or SV2C, the other members of the SV2 protein family (Gillard et al., 2011). There is a striking correlation between SV2A binding affinity and the anticonvulsant efficacy of a series of levetiracetam analogues in audiogenic seizure sensitive mice, which strongly suggests that this is the site via which they exert their antiepileptic effects (Kaminski et al., 2008). The anticonvulsant efficacy of levetiracetam is also diminished in heterozygous SV2A+/− mice (expression of SV2A protein reduced by 50%), which lends further support to the notion that SV2A is the primary target for seizure protection (Kaminski et al., 2009). However, despite intense investigation, the precise physiological role of SV2A is still unclear and it remains to be determined how drug binding influences SV2A.

SV2A belongs to the major facilitator superfamily of 12-transmembrane domain transporters, although no transport function has thus far been identified (Mendoza-Torreblanca et al., 2013). SV2A protein is highly expressed in presynaptic nerve terminals where it contributes to the complex protein interactions involved in synaptic vesicle release and recycling. It appears to interact with synaptotagmin, which acts as the calcium sensor in presynaptic terminals, and has been proposed to regulate the proportion of vesicle fusion with the presynaptic membrane by altering sensitivity to calcium (Janz et al., 1999; Custer et al., 2006). Levetiracetam appears to enter nerve terminals via recycled synaptic vesicles, where it then binds to selected amino acids (Phe658, Gly659 and Val661) that lie within the 10th transmembrane domain of the SV2A molecule but it does not appear to cause a major conformational change in protein structure, suggesting a modest effect on protein function (Lynch et al., 2008). Exposure to levetiracetam limits release of both glutamate and GABA from rat brain slices in an activity-dependent manner, with greatest effect on rapidly-discharging neurons which would be consistent with selective suppression of epileptiform activity (Meehan et al., 2012). Homozygous SV2A knockout in mice leads to a lethal seizure phenotype, suggesting that the presence of the protein acts to retard seizure generation (Crowder et al., 1999). As such, it is assumed that levetiracetam and brivaracetam facilitate the action of SV2A but there is no data that unequivocally support this conclusion. Likewise, it remains unclear whether binding of the drugs to SV2A leads to altered packaging, trafficking, membrane fusion or recycling of vesicles within the nerve terminal.

6. Cannabinoids

Cannabidiol (CBD), a non-psychoactive plant-derived cannabinoid, was found empirically to be effective in the treatment of certain epileptic encephalopathies, including Dravet syndrome and Lennox-Gastaut syndrome as well tuberous sclerosis complex (TSC) (Hess et al., 2016; Chen et al., 2019). CBD exhibits broad-spectrum antiseizure activity in animal seizure models, although relatively high doses are required (Conzroe et al., 1982; Jones et al., 2010; Klein et al., 2017). Unlike the structurally related cannabinoid Δ⁹-tetrahydrocannabino (THC), which acts as an agonist of CB1 (central nervous system) and CB2 (immune system) cannabinoid receptors, CBD is not a CB1 or CB2 receptor agonist. Moreover, whereas the CB1 receptor antagonist rimonabant blocks the antiepileptic activity of THC, it does not block the antiseizure activity of CBD, confirming that the effect of CBD on seizures is not due to an action on brain CB1 receptors (Wallace et al., 2001). The basis of the antiseizure activity of CBD is unknown. Among the targets that have been proposed are G-protein coupled receptor GPR55, transient receptor potential cation channel TRPV1, voltage-gated sodium channels, and equilibrative nucleoside transporter ENT1. CBD is an antagonist of GPR55 (IC₅₀ 0.4 mM), which is an orphan G-protein coupled receptor activated by endocannabinoids and some plant-derived and synthetic cannabinoid ligands (Ryberg et al., 2007; Marichal-Cancino et al., 2017). Deletion of GPR55 in mice produces no conspicuous gross phenotypic, behavioural or pathological changes and there have been no mention of changes in seizure susceptibility, which would be expected if inhibition of GPR55 is an antiseizure mechanism (Wu et al., 2013; Bjursell et al., 2016). Nevertheless, GPR55 is expressed in brain regions relevant to epilepsy, including the dentate gyrus and other regions of the hippocampus where it is present in both interneurons and excitatory neurons (Balenga et al., 2011; Kaplan et al., 2017). CBD has demonstrated clinical efficacy in the treatment of seizures associated with Dravet syndrome, which is often caused by mutations in Naᵥ1.1 voltage-gated sodium channels that are predominantly expressed in inhibitory interneurons. Reduced sodium current in interneurons and impaired inhibitory function is believed to be the pathogenic mechanism in Dravet syndrome cases associated with haploinsufficiency of the SCN1A gene that encodes Naᵥ1.1 (Parihar and Ganesh, 2013). CBD (albeit at high doses) protects against thermally-induced seizures (modelling febrile seizures) in a Scn1a−/− mouse model of Dravet syndrome (Kaplan et al., 2017). Moreover, CBD
was found to increase action potential generation in hippocampal GA-
Bergic interneurons in Scn1a+/– mice, which in turn increased the fre-
quency of inhibitory events in dentate granule cells. An antagonist of
GPR55 occluded the action of CBD, raising the possibility that CBD may
exert an antiseizure action in Dravet syndrome through effects on GPR55.

CBD has also been reported to be an agonist of TRPV1, a non-selec-
tive cation channel, which is predominantly expressed in nociceptive
neurons of the peripheral nervous system but may also be expressed in
brain regions relevant to epilepsy including the dentate gyrus of the
hippocampus (Jannotti et al., 2014). CBD was found to activate and
rapidly desensitize TRPV1 and to reduce epileptiform activity in hip-
 pocampal brain slices. A link between the agonist effect on TRPV1 and
antiseizure activity was not established. Indeed, TRPV1 activation with
capsaicin enhanced excitatory transmission in the dentate gyrus of mice
with experimental temporal lobe epilepsy, suggesting that TRPV1 ac-
tivation could be pro-epileptic (Bhaskaran and Smith, 2010). Moreover,
knockout of TRPV1 did not markedly impact chemosensitive seizures
in neonatal mice (Kong et al., 2014).

CBD has also been found in patch clamp recordings to be a non-
selective inhibitor of recombinant voltage-gated sodium channels at con-
centrations that could be relevant therapeutically (Ghovanloo et al.,
2018). Moreover, CBD appeared to stabilize the sodium channel in-
activated state as is the case for conventional sodium channel blocking
ASDs. Nonselective sodium channel blockers are well recognised to ag-
gravate seizures in Dravet syndrome (Brunklaus et al., 2012) and are
contraindicated in the condition (Wirrell et al., 2017). Therefore, it is
noteworthy that in large-scale clinical trials conducted to support approval
of CBD in the United States for the treatment of Lennox-Gastaut syndrome
and Dravet syndrome there was a greater prevalence of seizure worsening
when CBD was used in patients with Lennox-Gastaut syndrome who were
not taking clobazam and in patients with Dravet syndrome who were not
taking clobazam and stiripentol (Rogawski, 2019). The sodium channel
blocking action of CBD could possibly account for the worsening, which
seems to be masked by concomitant administration of a positive mod-
ulator of GABAA receptors. In clinical trials, CBD had reduced therapeutic
efficacy when used in the absence of clobazam. While pharmacodynamic
factors could contribute to the favourable interaction between CBD and
clobazam, a pharmacokinetic drug-drug interaction almost certainly plays a
role. CBD is an inhibitor of CYP2C19 and causes a marked (2.5 to 3-fold)
increase in plasma concentrations of norclobazam, an active metabolite of
clobazam (Geffrey et al., 2015; Rogawski, 2019).

An effect on adenosine dynamics is among the most plausible me-
chanisms proposed to explain the antiseizure activity of CBD. In studies
of cannabinoid actions on immune function, it was found that CBD
potently inhibits (IC50, 0.12 mM) ENT1, one isoform of the most
abundant family of mammalian plasma membrane transporters of nu-
cleosides including adenosine (Carrier et al., 2006). ENT1, which acts
as an equilibrative bidirectional transporter, is widely distributed
throughout the body and is present in the brain. Block of ENT1 by CBD
could theoretically enhance extracellular adenosine. Inasmuch as ade-
nosine is well recognised to inhibit seizure mechanisms, this is a rea-
sonable hypothesis to explain the antiseizure activity of CBD but no
supporting evidence has as yet been presented.

7. Disease-specific mechanisms

7.1. mTORC1 signalling

In epilepsyles caused by a specific genetically defined abnormality, a
therapy that functionally reverses the molecular defect should prevent
the occurrence of seizures and possibly also treat associated co-
morbidities. Everolimus, which is approved for the treatment of focal
seizures associated with TSC, is such a disease-specific therapy.

Malformations of cortical development are a common cause of epi-
leptic encephalopathies and pharmaco-resistant seizures. Many of these
epileptic encephalopathies are believed to be due to dysfunction in the
mTOR (mechanistic target of rapamycin) signalling cascade (Jeong and
Wong, 2018). mTOR is a protein kinase that is a central cell growth
regulator (Kim and Guan, 2019). mTOR forms the catalytic subunit of
mTORC1, which is a cytosolic protein complex that in addition to mTOR
includes the core components Raptor (regulatory-associated protein of
mTOR) and mLST8 (mammalian lethal with Sec13 protein 8) as well as
certain inhibitory proteins. Drugs that inhibit mTORC1, such as rapa-
mycin (sirolimus) and the rapalog everolimus, have various clinical roles
including prevention of organ transplant rejection and slowing cancer
growth and spread. Rapamycin and everolimus bind to the cyclophilin
protein FKBP12, a peptidyl-prolyl isomerase (Houghton, 2010). The ra-
pamycin-FKBP12 complex then allosterically inhibits mTORC1 by
binding to mTOR (when it is associated with Raptor and MLST8).

Tuberous sclerosis is caused by loss-of-function mutations in the TSC1
gene encoding the protein hamartin or in the TSC2 gene encoding tub-
erin (Hasbani and Crino, 2018). The mutations lead to constitutive
mTOR activation, resulting in abnormal cerebral cortical development
with multiple focal structural malformations (Lasarge and Danzer, 2014).
The substrate for the development of epilepsy is believed to be cortical
tubers and peri-tuberous cortical tissue with dysmorphic neurons, giant
cells, reactive astrocytes and disturbed cortical layering (Jeong and
Wong, 2018). The precise basis for epileptogenesis in the presence of
these diverse cellular abnormalities is not understood. However, the re-
ognition that mTOR signalling pathway hyperactivity is the basis for the
seizure disorder in TSC led to the investigation of mTOR inhibitors
everolimus and sirolimus in clinical trials with favourable results
(Curatolo et al., 2018). Apart from TSC, mTOR dysregulation has been
implicated in a large spectrum of genetic and acquired epilepsies, par-
ticularly those associated with malformations of cortical development
(Jeong and Wong, 2018). However, to date, there is no evidence that
everolimus is effective in epilepsies other than those associated with TSC.

7.2. Lysosomal enzyme replacement

Neuronal ceroid lipofuscinoses (Batten disease) are a group of in-
erited disorders caused by deficiencies in lysosomal enzymes in which
there is progressive intellectual and motor function deterioration with
refractory seizures (Johnson et al., 2019). One of these conditions,
neuronal ceroid lipofuscinosis type 2 (CLN2), is caused by lack of a
functional tripeptidyl peptidase 1 (TPP-1) enzyme, which serves as a
lysosomal exopeptidase that acts on a broad range of protein substrates.
Individuals with CLN2 disease exhibit refractory myoclonic seizures,
ataxia, developmental arrest and regression, central hypotonia with
appendicular spasticity, and rapidly progressing motor decline. Symptom-
tic treatment is provided by cerliponase alfa, a recombinantly
engineered human TPP-1 proenzyme delivered by intraventricular in-
fusion that replaces the enzyme in the brain (Schulz et al., 2018). Cerliponase alfa is taken up by target cells in the brain and is translo-
cated to the lysosomes through the cation independent mannos-6-
phosphate receptor (M6P/IGF2 receptor). The proenzyme is activated
in lysosomes and the activated proteolytic form cleaves tripeptides from
the N-terminus of lysosomal proteins.

Cerliponase alfa treatment has been demonstrated to slow the pro-
gressive motor deterioration in CLN2 disease and improve survival
(Schulz et al., 2018). There also appears to be improvement in seizures
but one-half of children studied did exhibit seizures during treatment.
In clinical trials, children remained on antiseizure medications and the
long-term effect of the treatment on seizures is uncertain. EEG ex-
aminations showed new epileptiform activity suggesting continued
disease progression.

8. Mechanisms in nonepileptic conditions

ASD are commonly used for the symptomatic treatment of diverse
nonepileptic conditions, notably pain conditions, migraine, and many
psychiatric disorders (Kaufman, 2011). In some cases, the mechanisms
accounting for the antiseizure activity of these drugs are also relevant to
their activity in nonepileptic conditions. For example, benzodiazepines
are used in the treatment of anxiety and panic disorders, alcohol
withdrawal, insomnia, and spasticity, and are also frequently used for
sedation. All of these effects are due to the actions of benzodiazepines
as positive allosteric modulators of synaptic GABA_A receptors. Sodium
channel blockade can explain the activity of carbamazepine and ox-
carbazepine in trigeminal neuralgia (Di Stefano and Truini, 2017)
and the antiarrhythmic activity (and cardiotoxicity) of phenytoin (Vaughan
Williams, 1984).

The analgesic activity of gabapentinoids in the treatment of neu-
ropathic pain likely results from an interaction with α₂δ-1 as has been
proposed for their antiseizure effect (Chincholkar, 2018). At the system
level, the efficacy of these drugs in chronic pain is thought to relate to
the depression of presynaptic excitatory input onto dorsal horn neurons
through interactions with α₂δ-1, which is upregulated after injury
(Rogawski and Löscher, 2004). In addition, gabapentinoids may influence
descending facilitation and inhibition, may induce anti-in-
flammatory effects, and may influence cortical mechanisms mediating
the affective components of pain. The interaction partners of α₂δ-1 that
account for these diverse effects may be similar or different from those
mediating the antiseizure actions.

In other instances, it is less clear that the antiseizure mechanism
relates to the therapeutic actions in nonepileptic conditions. For ex-
ample, there is no firm evidence that sodium channel blockade un-
derlies the efficacy of sodium channel blocking ASDs, notably carba-
mazepine and lamotrigine, in the treatment of bipolar mania
(Johannessen Landmark, 2008). Similarly, the cellular effects that ac-
count for the efficacy of valproate in bipolar disorder and in migraine
(Rogawski and Löscher, 2004; Rosenberg, 2007) are as equally obscure,
if not more so, as those that are responsible for its antiseizure activity.
The mechanism of action of topiramate in migraine prophylaxis is also
not understood.

9. Polytherapy and polypharmacology

An ever-improving understanding of the primary mechanisms by
which ASDs exert their effects reignites interest in the concept of rational
polytherapy in epilepsy. Although ~50% of people with epilepsy can
expect to achieve good seizure control with ASD monotherapy, a small
but significant proportion of individuals require treatment with two or
more drugs (Kwan and Brodie, 2006). There has long been an interest in
how to deploy ASDs in combination therapy so as to optimise efficacy and
tolerability (Ferrendelli, 1995; Brodie and Sills, 2011). There is extensive
evidence of synergism between drugs from studies in experimental ani-
mals (Czuczwar et al., 2009) but results in such studies have not trans-
lated into clinical practice. Combinations have therefore been selected
based on clinical experience. Indeed, prior to the 1980s, the combination
of phenytoin and phenobarbital was routinely used without much sci-
jentific justification. Today, the best accepted combination is that of
valproate and lamotrigine, which appears to possess a mutually beneficial
pharmacokinetic and pharmacodynamic interaction (Brodie and Yuen,
1997; Pisani et al., 1999). However, a fundamental understanding of the
mechanistic basis of ASD synergy has been elusive (Jonker et al., 2007).
There has been a longstanding belief that combining drugs with distinct
mechanisms is preferable to combining drugs that act on the same target
(Giussani and Beghi, 2013) but the evidence for this is mostly lacking
(Deckers et al., 2000). There has, however, been some support from post-
hoc subgroup analyses of clinical trial data in which subjects are cate-
gorized according to the mechanistic classification of their baseline ASDs.
Analysis of the pivotal clinical trial data obtained in support of registra-
tion of the sodium channel blocking ASD lacosamide found that ad-
juvant use of lacosamide when one or more sodium channel blocking
ASDs was a background medication resulted in less robust efficacy and
greater adverse effects than when used in patients whose baseline re-
gimen did not include a sodium channel blocker (Sake et al., 2010).

While much has been written about rational polypharmacy in epi-
lepsy, it has also been recognised that a single drug molecule may exert
more than one antiseizure action at therapeutic concentrations, thus
exhibiting “polypharmacology” (Reddy and Zhang, 2013). The combi-
bined effects on persistent sodium currents and GABA_A receptors that
are observed with cenobamate (Nakamura et al., 2019; Sharma et al.,
2019) may be an example of this phenomenon. There is some evidence
that cenobamate offers a greater opportunity for seizure freedom in the
treatment of focal-onset epilepsies than other ASDs (Krauss et al.,
2020). Whether this will be confirmed with widespread use remains to
be determined. If it is, the polypharmacology of cenobamate could be
the key to its ability to overcome pharmaresistance. A range of drugs
including valproate, felbamate, topiramate, zonisamide, rufinamide,
adrenocorticotropicin, and cannabidiol are listed in Table 1 as poten-
tially having multiple mechanisms; in some cases, inclusion in the list is
based on lack of understanding of the mechanism, whereas in others
(e.g., felbamate, topiramate and zonisamide) there is credible evidence
of polypharmacology.

10. Summary and conclusions

For much of the history of the drug treatment of epilepsy, only a
limited group of agents (bromide, phenobarbital, phenytoin, primidone,
ethosuximide, carbamazepine and valproate) were available to clinicians.
A turning point occurred in 1989 with the licensing of vigabatrin in the
United Kingdom and Ireland. The subsequent 30 years has seen an ex-
plosion in the number of small molecule ASDs approved by regulatory
authorities throughout the world. Virtually all of these agents were
identified by screening in animal models that are unbiased as to me-
chanism. While the new ASDs are chemically extremely diverse and while
their mechanisms of action, to the extent known, are also relatively di-
verse, the overall outcome in terms of seizure freedom has not improved
(Chen et al., 2018a). During this period, there have also been remarkable
advances in our understanding of how ASDs affect excitability mechan-
isms at the cellular level. Unfortunately, this knowledge has not been
successfully applied to the development of agents with better efficacy.

Even with the advances that have been made, our understanding of
ASD mechanisms remains incomplete. Nowadays this is more evident than
in the case of valproate, where more than 50 years after its first use in the
treatment of epilepsy there is still debate as to which if any of the drug's
diverse and often subtle cellular effects relate to clinical efficacy
(Lösch, 2002). In this article, we have focused on the primary me-
chanism(s) of action of ASDs, where these are known. Many drugs used
currently in the treatment of epilepsy have additional, less well-char-
acterised pharmacological effects that manifest at therapeutic con-
centrations and that might contribute to the drug's overall clinical pro-
file. It is also possible that these actions are pharmacologically
demonstrable but not of clinical relevance. There is no sure fire way to
determine whether a specific drug action is or is not contributory to clinical activity. Some such effects of uncertain relevance include en-
hancement of GABA_A-receptor conductance by carbamazepine and phe-
nytoin (Granger et al., 1995), modulation of serotonergic (Dailey et al.,
1997) and purinergic transmission (Marangos et al., 1987) by carba-
mazepine, and alterations in the brain concentrations and turnover of a
range of amino acid neurotransmitters by valproate (Lösch, 1993).

While substantial attention has been directed to elucidating anti-
seizure mechanisms, the cellular actions that underlie the adverse ef-
fects of ASDs remain relatively unexplored. There is a tendency to as-
sume that the mechanisms accounting for seizure protection are the
same as those that are responsible for side effects. This may be true in
some cases, i.e., dizziness, nystagmus and diplopia observed with so-
dium channel blocking ASDs are likely caused by inhibition of high-
frequency action potential firing in vestibular and oculomotor circuits
(Gittis et al., 2010). Likewise, the tendency of GABAergic ASDs to cause
somnolence is likely due to the same actions that confer antiseizure
effects: enhanced availability of GABA or positive allosteric modulation

G.J. Sills and M.A. Rogawski
Neuropharmacology 168 (2020) 107966
of GABA\textsubscript{A} receptors (Brohan and Goudria, 2017). However, there are many specific CNS-related adverse effects of individual ASDs, such as cognitive impairment caused by topiramate and aggressivity caused by levetiracetam and perampanel, that may or may not be attributable to the same mechanisms that are responsible for their antiseizure effects (Hansen et al., 2018). Moreover, it is noteworthy that systemic toxicities, including blood dyscrasias, hepatotoxicities, and hypersensitivity reactions occur with many ASDs as a result of drug actions unrelated to the therapeutic mechanisms of action (Leeder, 1998).

In recent decades, the science of epilepsy has seen dramatic progress as advances in genetics have led to an explosion in the understanding of the pathophysiological bases of certain rare epilepsy syndromes and epileptic encephalopathies. We are just now beginning to see the emergence of therapies that target the underlying disease mechanisms in these syndromes, exemplified by everolimus in the treatment of tuberous sclerosis-associated focal seizures. There is now cause for optimism that we are entering a new paradigm where it will be possible to engineer specific treatments for some genetically-defined epilepsies using disease-mechanism-targeted small molecules, antisense, gene therapy with viral vectors, and other biological approaches. In fact, there is good reason to believe that in certain genetic syndromes, therapies personalized to an individual patient’s specific mutation(s) will be possible. These therapies, or derivatives thereof, may ultimately prove to have utility in more common polygenic epilepsies, where the underlying pathophysiology is a result of complex genetic variation at multiple loci, where a specific genetic variant nonetheless plays a contributory role. However, until the causes of the common epilepsies are better understood, most patients suffering from epilepsy are unlikely to reap the benefits of this technological revolution.

Dedication

The authors dedicate this article to the memory of Professor Brian S. Meldrum, a colleague, collaborator, dear friend, and a giant in epilepsy and antiepileptic drug research.

References

Belelli, D., Harrison, N.L., Maguire, J., Macdonald, R.L., Walker, M.C., Cope, D.W., 2009. The authors dedicate this article to the memory of Professor Brian S. Meldrum, a colleague, collaborator, dear friend, and a giant in epilepsy and antiepileptic drug research.

References

Belelli, D., Harrison, N.L., Maguire, J., Macdonald, R.L., Walker, M.C., Cope, D.W., 2009. The authors dedicate this article to the memory of Professor Brian S. Meldrum, a colleague, collaborator, dear friend, and a giant in epilepsy and antiepileptic drug research.

References

Belelli, D., Harrison, N.L., Maguire, J., Macdonald, R.L., Walker, M.C., Cope, D.W., 2009. The authors dedicate this article to the memory of Professor Brian S. Meldrum, a colleague, collaborator, dear friend, and a giant in epilepsy and antiepileptic drug research.